Wednesday, 17 April 2013

Transmission Control Protocol (2)


Data transfer

There are a few key features that set TCP apart from User Datagram Protocol:

  • Ordered data transfer — the destination host rearranges according to sequence number
  • Retransmission of lost packets — any cumulative stream not acknowledged is retransmitted
  • Error-free data transfer
  • Flow control — limits the rate a sender transfers data to guarantee reliable delivery. The receiver continually hints the sender on how much data can be received (controlled by the sliding window). When the receiving host's buffer fills, the next acknowledgment contains a 0 in the window size, to stop transfer and allow the data in the buffer to be processed.
  • Congestion control 

Reliable transmission

TCP uses a sequence number to identify each byte of data. The sequence number identifies the order of the bytes sent from each computer so that the data can be reconstructed in order, regardless of any fragmentation, disordering, or packet loss that may occur during transmission. For every payload byte transmitted, the sequence number must be incremented. In the first two steps of the 3-way handshake, both computers exchange an initial sequence number (ISN). This number can be arbitrary, and should in fact be unpredictable to defend against TCP sequence prediction attacks.

TCP primarily uses a cumulative acknowledgment scheme, where the receiver sends an acknowledgment signifying that the receiver has received all data preceding the acknowledged sequence number. The sender sets the sequence number field to the sequence number of the first payload byte in the segment's data field, and the receiver sends an acknowledgment specifying the sequence number of the next byte they expect to receive. For example, if a sending computer sends a packet containing four payload bytes with a sequence number field of 100, then the sequence numbers of the four payload bytes are 100, 101, 102 and 103. When this packet arrives at the receiving computer, it would send back an acknowledgment number of 104 since that is the sequence number of the next byte it expects to receive in the next packet.

In addition to cumulative acknowledgments, TCP receivers can also send selective acknowledgments to provide further information.

If the sender infers that data has been lost in the network, it retransmits the data.

Error detection

Sequence numbers and acknowledgments cover discarding duplicate packets, retransmission of lost packets, and ordered-data transfer. To assure correctness a checksum field is included.

The TCP checksum is a weak check by modern standards. Data Link Layers with high bit error rates may require additional link error correction/detection capabilities. The weak checksum is partially compensated for by the common use of a CRC or better integrity check at layer 2, below both TCP and IP, such as is used in PPP or the Ethernet frame. However, this does not mean that the 16-bit TCP checksum is redundant: remarkably, introduction of errors in packets between CRC-protected hops is common, but the end-to-end 16-bit TCP checksum catches most of these simple errors. This is the end-to-end principle at work.

Flow control

TCP uses an end-to-end flow control protocol to avoid having the sender send data too fast for the TCP receiver to receive and process it reliably. Having a mechanism for flow control is essential in an environment where machines of diverse network speeds communicate. For example, if a PC sends data to a smartphone that is slowly processing received data, the smartphone must regulate the data flow so as not to be overwhelmed.

TCP uses a sliding window flow control protocol. In each TCP segment, the receiver specifies in the receive window field the amount of additionally received data (in bytes) that it is willing to buffer for the connection. The sending host can send only up to that amount of data before it must wait for an acknowledgment and window update from the receiving host.

When a receiver advertises a window size of 0, the sender stops sending data and starts the persist timer. The persist timer is used to protect TCP from a deadlock situation that could arise if a subsequent window size update from the receiver is lost, and the sender cannot send more data until receiving a new window size update from the receiver. When the persist timer expires, the TCP sender attempts recovery by sending a small packet so that the receiver responds by sending another acknowledgement containing the new window size.

If a receiver is processing incoming data in small increments, it may repeatedly advertise a small receive window. This is referred to as the silly window syndrome, since it is inefficient to send only a few bytes of data in a TCP segment, given the relatively large overhead of the TCP header. TCP senders and receivers typically employ flow control logic to specifically avoid repeatedly sending small segments. The sender-side silly window syndrome avoidance logic is referred to as Nagle's algorithm.

Congestion control

The final main aspect of TCP is congestion control. TCP uses a number of mechanisms to achieve high performance and avoid congestion collapse, where network performance can fall by several orders of magnitude. These mechanisms control the rate of data entering the network, keeping the data flow below a rate that would trigger collapse. They also yield an approximately max-min fair allocation between flows.

Acknowledgments for data sent, or lack of acknowledgments, are used by senders to infer network conditions between the TCP sender and receiver. Coupled with timers, TCP senders and receivers can alter the behavior of the flow of data. This is more generally referred to as congestion control and/or network congestion avoidance.

Maximum segment size

The maximum segment size (MSS) is the largest amount of data, specified in bytes, that TCP is willing to receive in a single segment. For best performance, the MSS should be set small enough to avoid IP fragmentation, which can lead to packet loss and excessive retransmissions. To try to accomplish this, typically the MSS is announced by each side using the MSS option when the TCP connection is established, in which case it is derived from the maximum transmission unit (MTU) size of the data link layer of the networks to which the sender and receiver are directly attached. Furthermore, TCP senders can use path MTU discovery to infer the minimum MTU along the network path between the sender and receiver, and use this to dynamically adjust the MSS to avoid IP fragmentation within the network..

MSS announcement is also often called "MSS negotiation". Strictly speaking, the MSS is not "negotiated" between the originator and the receiver, because that would imply that both originator and receiver will negotiate and agree upon a single, unified MSS that applies to all communication in both directions of the connection. In fact, two completely independent values of MSS are permitted for the two directions of data flow in a TCP connection. This situation may arise, for example, if one of the devices participating in a connection has an extremely limited amount of memory reserved (perhaps even smaller than the overall discovered Path MTU) for processing incoming TCP segments.

Selective acknowledgments

Relying purely on the cumulative acknowledgment scheme employed by the original TCP protocol can lead to inefficiencies when packets are lost. For example, suppose 10,000 bytes are sent in 10 different TCP packets, and the first packet is lost during transmission. In a pure cumulative acknowledgment protocol, the receiver cannot say that it received bytes 1,000 to 9,999 successfully, but failed to receive the first packet, containing bytes 0 to 999. Thus the sender may then have to resend all 10,000 bytes.

To solve this problem TCP employs the selective acknowledgment (SACK) option, which allows the receiver to acknowledge discontinuous blocks of packets that were received correctly, in addition to the sequence number of the last contiguous byte received successively, as in the basic TCP acknowledgment. The acknowledgement can specify a number of SACK blocks, where each SACK block is conveyed by the starting and ending sequence numbers of a contiguous range that the receiver correctly received. In the example above, the receiver would send SACK with sequence numbers 1000 and 9999. The sender thus retransmits only the first packet, bytes 0 to 999.

An extension to the SACK option is the duplicate-SACK option. An out-of-order packet delivery can often falsely indicate the TCP sender of lost packet and, in turn, the TCP sender retransmits the suspected-to-be-lost packet and slow down the data delivery to prevent network congestion. The TCP sender undoes the action of slow-down, that is a recovery of the original pace of data transmission, upon receiving a D-SACK that indicates the retransmitted packet is duplicate.

The SACK option is not mandatory and it is used only if both parties support it. This is negotiated when connection is established. SACK uses the optional part of the TCP header. The use of SACK is widespread — all popular TCP stacks support it. Selective acknowledgment is also used in Stream Control Transmission Protocol (SCTP).

Window scaling

For more efficient use of high bandwidth networks, a larger TCP window size may be used. The TCP window size field controls the flow of data and its value is limited to between 2 and 65,535 bytes.

Since the size field cannot be expanded, a scaling factor is used. The TCP window scale option is an option used to increase the maximum window size from 65,535 bytes to 1 gigabyte. Scaling up to larger window sizes is a part of what is necessary for TCP Tuning.

The window scale option is used only during the TCP 3-way handshake. The window scale value represents the number of bits to left-shift the 16-bit window size field. The window scale value can be set from 0 (no shift) to 14 for each direction independently. Both sides must send the option in their SYN segments to enable window scaling in either direction.

Some routers and packet firewalls rewrite the window scaling factor during a transmission. This causes sending and receiving sides to assume different TCP window sizes. The result is non-stable traffic that may be very slow. The problem is visible on some sending and receiving sites behind the path of defective routers.

TCP timestamps

TCP timestamps can help TCP determine in which order packets were sent. TCP timestamps are not normally aligned to the system clock and start at some random value. Many operating systems will increment the timestamp for every elapsed milisecond; however the RFC only states that the tics should be proportional.

There are two timestamp fields:

  • a 4-byte sender timestamp value (my timestamp)
  • a 4-byte echo reply timestamp value (the most recent timestamp received from you).

Out of band data

One is able to interrupt or abort the queued stream instead of waiting for the stream to finish. This is done by specifying the data as urgent. This tells the receiving program to process it immediately, along with the rest of the urgent data. When finished, TCP informs the application and resumes back to the stream queue. An example is when TCP is used for a remote login session, the user can send a keyboard sequence that interrupts or aborts the program at the other end. These signals are most often needed when a program on the remote machine fails to operate correctly. The signals must be sent without waiting for the program to finish its current transfer.

Forcing data delivery

Normally, TCP waits for 200 ms or for a full packet of data to send (Nagle's Algorithm = tries to group small messages into a single packet). This creates minor, but potentially serious delays if repeated constantly during a file transfer. For example a typical send block would be 4 KB, a typical MSS is 1460, so 2 packets go out on a 10 Mbit/s ethernet taking ~1.2 ms each followed by a third carrying the remaining 1176 after a 197 ms pause because TCP is waiting for a full buffer.

In the case of telnet, each user keystroke is echoed back by the server before the user can see it on the screen. This delay would become very annoying.

Setting the socket option TCP_NODELAY overrides the default 200 ms send delay. Application programs use this socket option to force output to be sent after writing a character or line of characters.

The PSH push bit as "a message to the receiving TCP stack to send this data immediately up to the receiving application". There is no way to indicate or control it in User space using Berkeley sockets and it is controlled by Protocol stack only.

1 comment:

  1. It is very useful and knowledgeable . thanks for sharing learn more knoweldge about it from it.[url=https://filmyzilla.naijalivinguk.com/]filmyzilla[/url]

    ReplyDelete